Data Types
	Sign and Magnitude

Example

00000011 = 3
10000011 = -3

	One way to represent negative numbers is to make the leftmost bit, called the most significant bit, a sign bit.
• If the most significant bit is zero, the number is positive
• if the most significant bit is one, the number is negative.

	Two’s Complement

28 expression in Two’s Complement
First write out 28 in binary
00011100

Then we invert in the digits
11100011
Then add 1

11100100 = -28 in binary two’s complement
	A much better way of representing numbers in binary is called two's complement.
To get the two's complement negative notation of an integer, you write out the number in binary. You then invert the digits, and add one to the result.

	Binary Addition

00010110 - 22
00101110 - 46
01000100 - 68
	1. 0+0 =0
2. 0 + 1 = 1
3. 1 + 0 = 1
4. 1 + 1 = 0 Carry 1 (This is 2 in denary or 10 in binary.)
5. 1 + 1 + 1 = 1 Carry 1 (This is 3 in denary or 11 in binary.)

	Binary Subtraction
Example denary 17-14 would be:

	14
	=
	00001110

	-14
	=
	11110010

	17
	=
	00010001

	17 + (-14)
	=
	(1) 00000011

The carry on the addition is ignored, and the correct answer is given.

	Binary subtraction is best done by using the negative two's complement number and then adding the second number.

	Hexadecimal

	4096
	256
	16
	1

	
	
	A
	C

A - (16 * 10) = 160
C – (1*12) = 12

160 + 12 = 172

	Base 16 in Maths, or hexadecimal in Computing. We abbreviate this to hex.
Decimal Hex
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F

	Fixed Point Binary

[image:]

In the binary example above, the left hand section before the point is equal to 5 (4+ 1) and the right hand section is equal to 1/2 + 1/4 3/4), or 0.5 + 0.25 = 0.75. So, using four bits after the point, 0101 1100 is 5.75 in denary.
	Fixed point binary numbers can be a useful way to represent fractions in binary. A binary point is used to separate the whole place values from the fractional part on the number line:

The range of a fixed point binary number is also limited by the fractional part. For example, if you have only 8 bits to store a number to 2 binary places, you would need 2 digits after the point, leaving only 6 bits before it.

	Floating point binary numbers – Positive Exponents

In all the examples below, eight bits are used for the mantissa and four bits for the exponent. The implied binary point is to the right of the sign bit.

[image:]

To convert the floating point binary number above to denary:
• Write down the mantissa, 0.1011010
• Translate the exponent from binary to denary 0011 = 3, This means that you have to move the point 3 places to the right, as the mantissa has to be multiplied by 2³
• The binary number is therefore 101.1010

	The leftmost bit of both the mantissa and the exponent is a sign bit, with 0 indicating a positive number, and 1 a negative number

To convert the floating point binary number above to denary:
• Write down the mantissa
• Translate the exponent from binary to denary.
· Move the point to where the exponent suggests
• Translate this to binary using fixed point scale
[image:]

	Floating point binary numbers – Negative Exponents

[image:]

• Find the two's complement of the exponent. (Remember that to convert a positive to negative binary number using two's complement you must flip the bits and add 1.) Exponent = -2
• Move the binary point of the mantissa two places to the left, to make it smaller, The mantissa is therefore 0.001 (You can ignore the trailing zeros)
• Translate this to denary. The answer is 0.125

	If the exponent is negative, the decimal point must be moved left instead of right.

	Floating point binary numbers – Negative Mantissa
[image:]

• Find the twos complement of the mantissa. It is 0.1010011, so the bits represent -0.1010011
• Translate the exponent to denary, 01 01 = 5
• Move the binary point 5 places to the right to make it larger. The mantissa is -10100.11
• Translate this to binary with the help of the below. The answer is -20.75.

	A negative floating point number will have a 1 as the sign bit or MSB (Most Significant Bit) of the mantissa indicating a negative place value.

	Normalisation floating point numbers

Normalise the binary number 0.0001011 0101, held in an 8-bit mantissa and a 4-bit exponent.
• The binary point needs to move 3 places to the right so that there is a 1 following the binary point.
• Making the mantissa larger means we must compensate by making the exponent smaller, so subtract 3 from the exponent, resulting in an exponent of 0010.
• The normalised number is 0.1 011000 0010

	Normalisation is the process of moving the binary point of a floating point number to provide the maximum level of precision for a given number of bits. This is achieved by ensuring that the first digit after the binary point is a significant digit.

A positive number has a sign bit of 0 and the next digit is always 1.

A negative number has a sign bit of 1 and the next digit is always 0.

	Examples of normalisation
Normalise the following number, using an 8-bit mantissa and a 4-bit exponent:
0.0000110 0001
0.0000110 0001 = 0.0000110 0001 x 21
	= 0.1100000 x 21-4
	Exponent = -3.
	3 = 0011. Take 2s complement, or work it out as -8 	for the sign bit, -3 = 1101
	Normalised binary number is 0.1100000 1101

	Examples of normalisation
Normalise the following number, using an 8-bit mantissa and a 4-bit exponent:
1.11100110011
1.1110011 0011 = 1.1110011 x 23
	= 1.00110000 x 23-3
	Exponent = 0
	Normalised binary number is 1.0011000 0000

	Converting from denary to normalised binary floating point

Convert the number 14.25 to normalised floating point binary, using an 8-bit mantissa and a 4-bit exponent.
• In fixed point binary, 14.25 = 01110.010
• Remember that the first digit after the sign bit must be 1 in normalised form, so move the binary point 4 places left and increase the exponent from 0 to 4. The number is equivalent to 0.111 0010 x 2⁴
• Using a 4-bit exponent, 14.25 = 0 11100100100

	To convert a denary number to normalised binary floating point, first convert the number to fixed point binary.

Remember that the first digit after the sign bit must be significant to be in normalised form,

	Converting from denary to normalised binary floating point

If the denary number is negative, calculate the two's complement of the fixed point binary:
 e.g. Calculate the binary equivalent of -14,25
 14.25 = 01110.010
 -14,25 = 10001.110 (two's complement)
In normalised form, the first digit after the point must be 0, so the point needs to be moved four places left,
10001.11 0 = 1.0001110 x 2⁴ = 10001110 0100

	If the denary number is negative, calculate the two's complement of the fixed point binary:

	Floating Point Arithmetic – Addition
Convert the denary numbers 0.25 and 10.5 to normalised floating point binary form using an 8-bit mantissa and a 4-bit exponent. Add together the two normalised binary numbers, giving the result in normalised floating point binary form.
Step 1
The numbers in normalised form are
0.25
0.1000000 1111

10.5
0.1010100 0100

Step 2
Write the mantissas with a binary point , and convert the exponents to denary, giving
	0.1000000 exponent -1 and
	0.1010100 exponent 4

Step 3: Make both exponents 4 and shift the binary points accordingly
0.0000010
0.1010100
Step 4: Add the numbers, giving 0.1010110 exponent 4 0100 (In this case it's already normalised)
	The rules for addition and subtraction can be stated as:
· line up the points by making the exponents equal
· add or subtract the mantissas
· normalise the result

	Floating Point Arithmetic – Subtraction

0.1000100 0110 minus 0.1000010 0101

Step 1: Convert the exponents to denary. giving
 0.1000100 exponent 6 and
 0.1000010 exponent 5
Step 2: Make both exponents 6 and shift the binary point of the second number accordingly
0.1000100 exp 6
0.0100001 exp 6 (make the number smaller as you increase the exponent)
Step 3: Find the twos complement of the second number
	1.1011110 +1 = 1.1011111
Step 4: Add the numbers
	0.1000100
	1.101111 1
 (1)0.0100011 exp 6 (ignore the carry)
Now normalise the number by moving the binary point right 1 place, which increases the number, and decrease the exponent by 1
Result is: 0.1000110 0101

	The rules for addition and subtraction can be stated as:
· line up the points by making the exponents equal
· Find the twos complement of the second number
· add the numbers
· normalise the result

[bookmark: _GoBack]

image1.png
) Chapter 30 - Binary Arithmetic.pdf - Adobe Acrobat Pro -
File Edit View Document Comments Forms Tools Advanced Window Help

) e) Comiior) Coboie - (@8 Scem 550 [B) Forre - [ki) Cormmct -

=) LI %5 [T & @O w% - 5 (A

CHAPTER 30 ~ BINARY ARITHMETIC

Fixed point binary numbers €

Fixed point binary numbers can be a Useful way to represent fractions in binary. A binary point is used to
separate the whole place values from the fractional part on the number line:

8 4 2 1 = Y% Vi Y% Y

B I ey

01 01 = 1 1 0 0

In the binary example above, the left hand section before the point is equal to 5 (4+1) and the right hand
section is equal to Y% + % (%), or 0.5 + 0.25 = 0.75. So, using four bits after the point, 0101 1100 is 5.75
in denary. A useful table with some denary fractions and their equivalents is given below:

Q8: How is 19.25 represented using a single byte with 3 bits after the point?

Binary fraction Fraction Denary fraction
0.1 1/2 0.5
0.01 1/4 n o5

1654x1170in <

T ETElaTe 2] R

image2.png
) Chapter 31 - Floating Point Arithmetic.pdf - Adobe Acrobat Pro
Fle Edt View Document

Comments Forms Tools Advanced Window Help x
) Creste - &) Combine - 3] Collborste ~ g Secure - =] foms - [y Muttimedia = (5 Comment -

C 4 =] & 2 /1 1k Y & ® 100% - o [Find -

=k, m =)’ Q 0 4 Lo O PIETES O e e,

This technique can easiy be applied to binary numbers too, where the mantissa and exponent are
represented for example using 12 bits, with 8 bits for the mantissa and 4 bits for the exponent.

The leftmost bit of both the mantissa and the exponent is a sign bit, with 0 indicating a positive number,

and 1 a negative number. In a computer, of course, many more bits than this will be used to represent a
floating point number, with 32-, 64- and 128-bit floating point numbers all being common.

In all the examples below, eight bits are used for the mantissa and four bits for the exponent. The implied.
binary point is to the right of the sign bit.

S Mantissa Exponent
Do A Qudg-q4 10

10 Q-0 4 q
01011010 0011 = 0.101101 x 2° = 0\1}?}3}101 =4+1+0.5+0.125 = 5.625

To convert the floating point binary number above to denary:

Write down the mantissa, 0.1011010

* Translate the exponent from binary to denary 0011 = 3. This means that you have to move the point
3 places to the right, as the mantissa has to be multiplied by 27,
The binary number is therefore 101.1010

Translate this to binary using the table in Figure 31.1. The number is 5.625.

Qd: Convert the following floating point numbers to denary: You can use Figure 1 to help you.
(@) 0+ 1101010 0100 (6) 0+ 1001100 0011

AR U

image3.png
) Chapter 31 - Floating Point Arithmetic.pdf - Adobe Acrobat Pro
Ele Edt View Document Comments Fopms Tools Advanced

&) crie -) omtie - @) Coterte s

el % 7

Window_Help

Foms - [Mutineds - & Conment-
o s -

=] Fnd

01011010 0011 = 0.101101 x 2° = 0\1}?}3}101 =4+1+0.5+0.125 = 5.625

To convert the floating point binary number above to denary:

Write down the mantissa, 0.1011010

3 places to the right, as the mantissa has to be multiplied by 27,

Translate the exponent from binary to denary 0011 = 3. This means that you have to move the point
The binary number is therefore 101.1010

Translate this to binary using the table in Figure 31.1. The number is 5.625.

Qd: Convert the following floating point numbers to denary: You can use Figure 1 to help you.
(a) 0. 1101010 0100

(b) 0 * 1001100 0011
Negative exponents

Ifthe exponent is negative, the decimal point must be moved left instead of right.

01000000 1110 = 0.1 x 22 =

01 =0.125
g o

The example above has a positive mantissa of 0.1000000 and a negative exponent of -2.

Find the two’s complement of the exponent. (Remember that to convert a positive to negative binan/
number using two's complement you must flip the bits and add 1.) Exponent = -2

Move the binary point of the mantissa two places to the left, to make it smaller. The mantissa is
therefore 0.001 (You can ignore the trailing zeros)

Translate this to denary with the hal
@] e |

£ Ei

44 Th,

A U

image4.png
) Chapter 31 - Floating Point Arithmetic.pdf - Adobe Acrobat Pro
File Edit View Document Comments Forms Tools Advanced Window Help

S Crete - £2) Combine - 3] Coloborate - gy Secure = ' Sign < (=] Forms - [Mutimedia - 5 Comment -
)= B P 2 NG & OO % - (YA -

@5: Convert the following floating point number to denary: 0 * 1100000 1110,

Handling negative mantissas

A negative floating point number will have a 1 s the sign bit or MSB (Most Significant Bit) of the mantissa
indicating a negative place value.

0101101 0101 = - 0,1010011 x 2° = -10100.11 =

20.75

The example above has a negative mantissa of 1,0101101 and a positive exponent of 0101

* Find the twos complement of the mantissa. It is 0.1010011, so the bits represent -0,1010011
¢ Translate the exponent to denary, 0101 = 5

* Move the binary point 5 places to the right to make it larger. The mantissa is -10100.11

* Translate this to binary with the help of Figure 31.1. The answer is -20.75.

@6: Convert the following binary numbers to denary:
(@ 010000001110 (b) 1+ 0011000 0100

Normalisation

Normalisation is the process of moving the binary point of a floating point number to provide the
maximum level of precision for a given number of bits, This is achieved by ensuring that the first digit after
the binary point is a significant digit. To understand this, first consider an example in denary.

In the denary system, a number such as 5,842,1301can be represented with a 7-digit mantissa in many
Aitncont

