

Fig. 9.1

State the Boolean expression represented by the Karnaugh map in Fig. 9.1, in its smallest form.	
	<u>[4]</u>

2 Draw the logic gates represented by the Karnaugh Map below. Show your working.

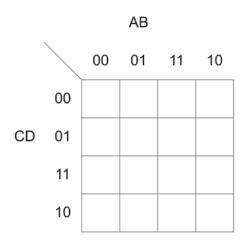
	AB						
		00	01	11	10		
	00	1	1	0	0		
CD	01	1	1	0	0		
	11	0	0	1	1		
	10	0	0	1	1		

3(a) A Boolean expression is entered into a Karnaugh Map.

Give a simplified version of the expression using the Karnaugh Map. You must show your working.

		АВ						
		00	01	11	10			
CD	00	1	1	1	1			
CD	01	1	1	1	1			
	11	0	1	1	0			
	10	0	1	1	0			

Simplified Expression: ._____


[3]

(b) Draw a logic gate diagram to represent the expression below.

[4]

$$(\neg A \land B) \lor (\neg C \land D)$$

(i) Complete the Karnaugh map below for the Boolean expression (\neg A \land \neg B) \lor (A \land \neg B)

[3]

(ii)	Use the Karnaugh map to find a simplified Boolean expression that is equivalent to (¬ A ∧ ¬ B) ∨ (A ∧ ¬ B)						
		-					
	[2]]					

5 Elliott has designed a logic circuit. The expression he has created for the logic circuit is:

$$Q = (A \wedge \neg B) \vee (\neg A \wedge C \wedge D) \vee (A \wedge B)$$

Complete the Karnaugh Map below to simplify this expression. Show your working.

		АВ					
		00	01	11	10		
	00						
CD	01						
	11						
	10						

Simplified expression:	
	[4]

A computer scientist has created the following logic circuit shown in Fig. 6.

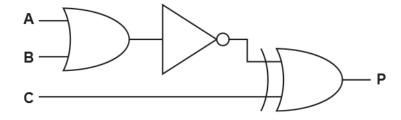


Fig. 6

(i)	Give the Boolean expression that represents the logic circuit shown in Fig. 6. Do not attempt to simplify the
	expression.
	[2]

(ii) Complete the truth table for the logic circuit shown in Fig. 6.

Α	В	С	Р
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

[3]

(b) The following Karnaugh map represents another logic circuit.

		AB					
		00	01	11	10		
CD	00	1	1	1	1		
	01	1	1	0	0		
	11	0	0	0	0		
	10	0	0	1	1		

Use this Karnaugh map to find the simplified expression for this circuit.

ou should highlight the map as appropriate and write the expression here.						
	[4]					

Find the Boolean expression represented in the Karnaugh Map below. Show your working.

			AB		
		00	01	11	10
	00	1	1	1	1
CD	01	0	0	1	1
	11	0	0	0	1
	10	0	0	0	1

8 An electronics engineer needs a circuit with the following logic.

$$(\mathsf{A} {\scriptstyle \wedge} \mathsf{B}) \vee (\neg \mathsf{A} {\scriptstyle \wedge} \mathsf{B}) \vee (\neg \mathsf{C} {\scriptstyle \wedge} \neg \mathsf{D})$$

Complete and use the Karnaugh map below to simplify the expression above.

		AB					
		00	01	11	10		
CD	00						
CD	01						
	11						
	10						

Simplified expression:	
	[4 <u>]</u>

END OF QUESTION PAPER

Qı	uestio	n	Answer/Indicative content	Marks			G	uidanc	e					
1			(¬A ∧¬D) ∨(A ∧B ∧C) ∨(¬B ∧¬C ∧¬D) One mark for each bracketed section. One mark for them being joined with ORs	4										
			Total	4										
2			Correctly identified groups on	4		АВ								
			Karnaugh map / Correct boolean statement.(1)	(AO2.2)	`		00	01	11	10	1			
			- NOT A AND NOT C Gates (1)			00	1	1	0	0				
			A AND C gates (1)		CD	01	1	1	0	0				
			– A AND C gates (1)			11	0	0	1	1				
			 Both sets of gates joined by OR gate (with no other gates used). (1) 			10	0	0	1	1				
					(¬A ∧	¬C) ∨	(A∧C))						
					Or eq	uivale	nt.							
					A CONTRACTOR OF THE PARTY OF TH									
					Or equivalent.									
					Examiner's Comments Most candidates scored well on these questions demonstrating their understanding of logic gate circuits. Some candidates simplified the circuit in part b) which achieved full marks provided the resultant circuit gave the same output.									
			Total	4										

Q	Question			An	swer/l	ndicat	ive co	ntent	Marks	Guidance			
3	а		AB						3	Also accept: ¬C vB			
			`		00	01	11	10		Accept alternative symbols.			
				00	1	1	1	1	AO2.1				
			CD	01	1	1	1	1	(1, 1st Mark)				
				11	0	1	1	0	AO2.2				
				10	0	1	1	0	(2, Last 2 Marks)	Examiner's Comments			
			- E	Corre Bv		groups	identif	fied.		The question required candidates to find the Boolean expression represented in the Karnaugh Map. Most candidates achieved a mark for showing the correct groupings on the map. Many went on to achieve the marks for the resultant expression. Alternative notations were accepted and credited.			
	b		- AN inp inp - An bo	ID ga outs th outs. OR g th AN	ites: or ne othe gate ta ID gate	er takin Iking in	ng (NO g (NO the ou	T) A, B as Γ) C, D as tputs of ections	4 AO2.2 (4)	Examiner's Comments Most candidates achieved some credit on this question. There were some unusual representations for NOT gates. Candidates are best advised to use the representations listed in the appendix to the specification.			
			Total						7				

Question			Answer/Indicative content	Marks		Gui	idance			
4		i	 left column filled with 1s (¬ A ∧ ¬ B) right column filled with 1s (A ∧ ¬ B) 	3			AB			
			Middle 2 columns filled with zero or blank	AO1.2 (1)		00	01	11	10	
				AO2.2 (2)	00	1	0	0	1	
					CD 01	1	, 0	0	1	
					11	, 1	0	0	1	
					10	1	0	0	1	
		ii	• ¬ B / NOT B	2	AB					
			 Karnaugh map used to show 1s highlighted with overlap 	AO2.2		00	01	11	10	
					00	1	0	0	1	
					CD 01	1	0	0	1	
					11	. 1	0	0	1	
					10	1	0	0	1	
			Total	5						

Q	Question Answer/Indicative content						Marks	Guidance			
5	uestio	n	Solutio CD CD CD CD 1 mark marks: 1 m 1 m	n: 00 01 11 10 per bu	AB 00 0 0 1 0 filling the gr	AB 01 0 0 1 0 to a m in the soup sh	AB 11 1 1 1 aximur	AB 10 1 1 1 1 om of 4		Marks 4 (AO2.1) (2) (AO2.2) (2)	Brackets are not required for the simplified expression Examiner's Comments This question was answered well with many candidates achieving all 4 marks. Some completed the table correctly but were not able to simplify the expression appropriately.
			V (0	nark for C ∧ <i>D</i>)	the si	mplifie	d expre	ession	<i>A</i>		
			Total							4	

Que	Question			Answer/	Indicati	ve cont	ent	Marks	Guidance
6 a	а	i	• ¬ (A • <u>∨</u> C	. v B) // N // XOR (NOT (A (OR B)		2	First MP requires brackets, NOT A or B is incorrect. Can be written in different order (e.g. C XOR NOT (B OR A) as long as logically correct. Accept (A + B) ⊕ C Examiner's Comments This question was generally well answered, although some candidates
		ii	• 1 ma	B O O 1 O 1 1 O O 1	ext two i	rows (0,	1)	3	Examiner's Comments This question was generally well answered.

Question	Answer/Indicative content	Answer/Indicative content Marks Guidance								
Question	Answer/Indicative content • Correct highlighting on K map as shown	Marks 4	Guidance AB 00 01 11 10 01 11 10 00 11 10 00 01 11 1							
			MP1 - correct answer only MP4 is dependent on MP2 & 3 Examiner's Comments There were many candidates who were able to gain full marks on this question. Those who did not showed a lack of understanding of grouping on a Karnaugh map, either grouping to include zeros or missing the wrapping group and adding another group in for the top row.							
	Total	9								

Question		A	nswer/l	Indicat	ive cor	ntent	Marks	Guidance
7	(<i>i</i>)	furth - Ans - Ans - Ans - All th orde o furthe g. AA¬B) he brace	ups correct group wer incluser incluser section (AA¬C) skets are per -, Ma	ps). udes ¬ udes ¬ udes ¬ ctions jo th ns.)∨(¬ C∧ en't nec	C∧¬D C∧¬D C∧¬D oined w	rith ∧s ir	5 (AO1.2)	AB OO 01 11 10 OO 1 1 1 1 1 CD 01 0 0 1 1 10 0 0 1 10 0 0 1 Examiner's Comments The question required candidates to find the Boolean expression represented in the Karnaugh Map. Most candidates achieved a mark for showing the correct groupings on the map. Many went on to achieve some marks for the resultant expression. Some candidates specified NOT(C AND D) instead of NOT C AND NOT D evidently assuming the expressions are the same.
	Т	otal					5	
8		00 01 11	0		AB 11 1 1 1 1	10 1 0 0	4	For 4 marks. 1 mark for simplified expression: B ∨ (¬C∧¬D) 1 mark for filling in table correctly. 1 mark for identifying each grouping (maximum 2). Allow follow through if tabled filled incorrectly giving one mark for each valid grouping if it is the most efficient possible to a maximum of two marks.
	Т	otal					4	