LMC Instruction Set

Little Man Computer Memory:
01234586789

Message Box:

==> VAIUE . LZ 10T (1€ ACCUTTUTALOT S (OTEat0 MEMony 10CAuon 10

1]o[1]ofofo]1]2]0]s

10 11 12 13 14 15 16 17 18 19

: ion in Memory 4 is 509

> 5 represents: LOAD

> 09 represents: source memory location

--> Value : 3 from memory location 09 transfered to the Accumulator

L] 2]0]0]0]0]0]0[0]0 e 5. nstruction in Memory 5 is 110

20 21 22 23 24 25 26 27 28 29

--> 1 represents: ADD
> 10 represents: source memory location

0jofoj0oj0]0]0]0 0 0 -->Value: 12 from memory location 10 added to the Accumulator

30 31 32 33 34 35 36 37 38 39

ololofofofofofofo]o]

PC = 6 : Instruction in Memory 6 is 311
> 3 represents: STORE
> 11 represents: target memory location

40 41 42 43 44 45 46 47 48 49 |--> Value : 15 from the Accumulator storedto memory location 11

“ofolololololo oo/ =7 mstructionin Memory 7is 902
010]0]0]0[0]0[0]0]0[7 4, anracante: NBIT ar ciTOIT

Instruction

Mnemonic

MachineCode

Load

LDA

5xx

Store

STA

3xx J

Add

ADD

1xx

Subtract

SUB

2XX

Input

INP

901

Output

OuT

902

End

HLT

000

Branch if zero

BRZ

Txx

Branch if zero or positive

BRP

8xx

Branch always

BRA

6xx

Data storage

DAT

L ——

Little Man Computer

Mark Clarkson
March 2014

Your First Program

Some key points:

« ALWAYS copy your code before compiling, as you will lose it

e Remember readability:
« LMC will ignore blank lines
« LMC is not case sensitive, but good habits help

Message Box:

INP
WSTA numOne

INP
STA numTwo

LDA numOne
ADD numTwo

ISTA numThree
ouT

[HLT

numOne DAT

‘numTwo DAT
numThree DAT

Some °‘sii

mple’ challenges

1. Ask the user for 3 numbers. Print them out in reverse order.

Test Data

Inputs Outputs

7,8,9

9,8,7

8,16, 32

32,16,8

Finished Code

Some ‘simple’ challenges

2. Ask the user for 3 numbers. Add them up and print out the answer.

Test Data
Inputs Outputs
7,8,9 24
8,16, 32 56

Finished Code

Some ‘simple’ challenges

3. Ask for 8 numbers.
Print out the first - the second.
Then the second - the first.

Test Data
Inputs Outputs
7,3 4,-4
5,12 -7,7

Finished Code

Phase 2 - branching

Branching allows you to take a program down & different paths.

There are 3 types of branch:
Code Meaning
BRZ Branch if zero
BRP Branch if positive
(or zero)
BRA Branch always
(used for looping)

L

Branching Example

Branching allows you to take a program down & different paths.

GET AND STORE TWO NUMBERS.
start SUBTRACT ONE FROM THE OTHER

/

Input a Input a

number number

Store in Store in
'numOne’ 'numTwo'

Subtract
'numOne’

NUMBERS ARE EQUAL NUMBERS ARE DIFFERENT

Is answer
=0?

ers
Load Print it Load
'numOne’ out 'numOne’
————

[|

‘ Halt) Add ‘numTwo' Halt

.

Print the
result

If Statements...

Human logic works like this:

If the two numbers are the same then print one of them out.

Otherwise, add them together and print the result.

We work through the positive result first, then the negative one. In LMC
it doesn’t work like that.

If the two number are the same then jump to ‘same’.
Otherwise, add them together and print the result.

Same: Load the first number and print it out.

The easiest workflow is like this:

INP First, write your opening instructions.
STA numOne

INP
STA numTwo
SUB numOne

In this case, input and store two
numbers and then subtract them.

...continued

if answer IS zero...

...otherwise...

& declarations

INP
STA numOne
INP
STA numTwo

B-aumOne
BRZ same

same LDA numOne
ouT
HLT

INP

STA numOne
INP

STA numTwo
SUB numOne
BRZ same

LDA numOne
ADD numTwo

same LDA numOne
ouT
HLT

INP

STA numOne
INP

STA numTwo
SUB numOne
BRZ same

LDA numOne
ADD numTwo
ouT
HLT

same LDA numOne
ouT
HLT

numOne DAT
numTwo DAT

Add the branch if zero
to the label ‘same’.

Leave some empty
space.

Then write the
“same” instructions

Next, add in the
“otherwise”
instructions.

Remembering to
include a HLT

Finally, add the DAT
declarations at the
very end (only once)

Intermediate challenges

1. Ask the user for 2 numbers. If they are the same then double the
number and print it out. If they are different then print them both

out individually.
Test Data
Inputs Outputs
15,15 30
12,9 12,9

Finished Code

Intermediate challenges

2. Ask the user for & numbers. Print out biggest, then the smallest.

Test Data
Inputs Outputs
12,15 15, 12
7,8 7,8

Finished Code

Intermediate challenges

3. Ask the user for & numbers, print out the result of the biggest
number minus the smallest number

Test Data
Inputs Outputs
7,3 4
5,12 7

Finished Code

Loops!

Looping in LMC involves using one or more branches that repeats a set
of instructions.

Predict what the following code will do:
(Hint: BRA means Branch Always)

INP
STA numOne Prediction
looptop ADD numOne
ouT

BRA looptop

HLT

numOne DAT

Now try it out and see for yourself.

In order to make it better, we need an escape clause.

INP Use a trace table to follow this problem
STA bigNum through.

INP

STA littleNum o -

looptop LDA bigNum Try it with 20 and 4 as the inputs

SUB littleNum

?)TU/:' bigNum The BRZ is a conditional escape from the loop
BRZ end

BRA looptop If the answer is zero, escape,
end HLT otherwise keep looping.

bigNum DAT

littleNum DAT

This is just like as WHILE loop.

Advanced challenges

1. Ask the user for a big number, then a small number. Using only a BRP
to loop round, keep subtracting the smaller number until you get past
zero, then output the result.

Test Data
Inputs Outputs
20,3 -1
16,4 -4

Finished Code

Advanced challenges

2. You can declare a constant at the end of the program like this:
one DAT 1 (this will give the variable ‘one’ the value 1)
Using this, add to your previous program to count the number of
times you can successfully subtract the smaller number.

Test Data
Inputs Outputs
20,3 6
16, 4 4

Finished Code

Advanced challenges

. Write a program that will ask for 2 numbers and then multiply them.
While this may be tricky, you should now know enough to do it!

. How about a program that will divide two numbers and give the DIV
and MOD. DIV is the whole number result of a division. MOD is the
remainder.

e.g. 17 + 5 =3 remainder 2
. Try writing a program that will check if two numbers are a factor of
each other. First enter a big number, then a small number. If the

small number is a factor then it should divide with no remainders.

. Try improving program 5 so that it doesn’t matter which way round
you enter the numbers.

